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ABSTRACT

In this paper we present a method, based on linear interpolation, for
detecting and correcting bad data points in a set of data without
contaminating the good data points. We are not concerned with the
small random errors usually attributed to a noisy system and assume
that the data points which are in error are relatively isolated from
each other and that the number of such points is small compared to the
total number of data points
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Data Smoothing and Error Detection

Based on Linear Interpolation

V. M. Guerra* and R. A. Tapia*

1. Introduction. In the handling of large sets of data

it is not uncommon to inadvertently introduce errors into

the data. Typical causes for the introduction of error

might be:

(a) Reading error;

(b) Keypunch error;

(c) Machine malfunction.

In this paper we consider the problem of detecting and removing

these errors without contaminating the good data. We are

not concerned with the small random errors usually attributed

to a noisy system. Therefore it seems reasonable to ex-

pect that the data points which are in error are relatively

isolated from each other and that the number of such points

is small compared to the total number of data points;

however the errors themselves will probably be quite large.

This latter consideration alone forces us to reject the

well-known averaging techniques for data smoothing[3]; since

the bad data would significantly effect the good data.

* Department of Mathematical Sciences, Rice University, Houston,
Texas 77001. This work was sponsored by NASA-MSC under
contract NAS 9-12776.



If we consider removing the errors by smoothing the

data using splines and least squares (see [4], [6], [7]

and[8] ), then it is well-known that the L2 norm (least

squares) is sensitive to outliers (hence, again our bad

pointswould influence our good points). This observation

immediately suggests the use of splines and the i norm via

linear programming with differential inequality constraints

(see (2] and [5] ). Our main reason for rejecting both L1

and L2 (as well as L ) approaches is both obvious and ex-

tremely realistic. Namely, for large data sets, such as

the remote sensing data presently being analyzed at NASA

Manned Spacecraft Center, the use of the L
1

or L
2

approach

would require a prohibitive amount of computer time and

computer storage and would undoubtedly lead to extreme

numerical instabilities. The amount of work required to

implement these two approaches is of the order of n where

n is the number of data points. The approach we are about

to describe is of order n (i.e. the work increases linearly

with the data). Moreover, while we acknowledge the fact

that both the I% and L2 approaches would probably give sat-

isfactory results for small data sets we feel our approach

will do as well.

In this paper we consider only the one-dimensional problem.

In subsequent papers we will extend our approach to higher

dimensions and also consider using methods of interpolation

more sophisticated than linear interpolation.
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2. The Linear Smoothing Algorithm. Consider a set of points

in the plane with equally spaced abscissas, say

A ((xiY i ): i-,...,m].

Definition 1. By an anchor point of the set A we mean a

point which is assumed to be correct and is not to be

smoothed.

Remark. We shall assume that (xl,Yl) and (xm,ym) are

always anchor points of the set A.

Definition 2. By the point energy of the non-anchor point

(xi , )E A we mean the (ordinate) distance from the line

passing through the points (xil,yil) and (xi+l,yi+

to the point (xi,Yi). If (xi,Y
i
) is an anchor point,

then its point energy is zero.

Definition 3. By the total energy of the set A we mean the sum

of the point energies of all points in A(i.e., the L 1-norm of

the point energies).

Definition 4. By the smoothness of the set A we mean the

largest point energy (i.e., the Lw-norm of the point energies).

Moreover, we say that A is e-smooth if the smoothness of A is

less than or equal to e.

Proposition 1. The following are equivalent:

(a) The set A is O-smooth;

(b) The set A has zero total energy;



(c) The set A lies on the piecewise-linear function

which interpolates the anchor points of A.

Proof. The proof is straightforward.

Definition 4. By the normalized second difference at the

point (xi,Yi) E A we mean

yi ayi+l Yi 
+

Yi- 1 ' ' '

Proposition 2. If ci denotes the point energy of the non-

anchor point (xi,Yi) F A, then

Q'i = IriI.

Proof. The proof is not difficult.

Definition 5. By the linear smoothing approach we mean

the transformation of the set A into an e-smooth set by

successive changes of the values of the ordinates of the

points with the largest point energies. Specifically, if

l-~ken is such that ak=max{ai:l- i:n] (if more than one such

k exists then we choose the one of smallest index), then

we change the point (xk,Yk) to the point (xk,Yk+ krk)

for some ½<ek<l and repeat the procedure until (hopefully)

the transformed set is e-smooth (for some given e>O).

Remark. If 8k=0, then the data is not modified. If k=1,

then we are moving the point (xk,yk) onto the line inter-

polating its two neighbors; hence by requiring .1-4 l we
? k

have guaranteed that the point energy at the k-th point



will decrease at least by a factor of I.

Remark. For simplicity we may choose 8k always equal to

1 3
a constant, e.g., ', or 1.

3. Convergence of the Linear Smoothing Algorithm. To dis-

tinguish between the values of the point energies and other

quantities at different iterations a subscript, or a second

subscript (whatever the case may be) will be added whenever

necessary. For example A
n
will denote the set A at the n-th

iteration of the linear smoothing process. We also let

A denote A.

Proposition 3. If E denotes the total energy of A , then
n n

(E } is a monotone nonincreasing sequence. Moreover
n

E n+l E - 1 kn(k denotes the index of point in A which
n+~ n k kn n

is to be' modified) if either the (k-l)-th or (k+l)-th point is

an anchor point. Finally we have En+1 = E if and only if
n

rkln' rk n and rk+l n are of the same sign and the (k-l)-th

and (k+l)-th points are not anchor points.

Proof. All the point energies except possibly ak-l' ak and

!k+l are the same at the n-th and (n+l)-th iteration.

Moreover

hence

Yk,n+l Yk,n krk,n;

r+ln+l +ln + 
k+l,n+l k+l,n 2 k k,n

(1)
= rk-l n + R;krk,n

r
k- , n+l



b

rk,n+l (lek)r k, n

Now since O Sk'l we have

Irk,n+l' = (l-ok)Jrknl

Therefore taking absolute values, using the triangle

inequality and adding in (1) we have that E +1 E .
n+1 n

Clearly if the (k-l)-th or the (k+l)-th point is an

anchor point we must have a decrease in the total energy

of at least ½Jklrk, n Again from (1) we will have a de-

crease if either rk-ln or r has a different signk-ln k+l,n

than rk . This proves the proposition.
k,n

Remark. Although the energy of A may be equal to then+l

energy of A (i.e., no decrease) it may happen that An+1

is significantly smoother than A . However a simple example

can be constructed to show that the smoothness(in contrast to

the energy) is not monotone nonincreasing; hence for certain

purposes the natural criterion (norm) to use is the energy.

Proposition 4. If the total energy of the set An is not

zero, then the maximum number of iterations that can occur

without decreasing this energy is bounded above by

B = 2m

(where m is the number of data points).-

Proof. We will first show that if the energy is not decreased,

then we can only modify a particular point twice before moving

on to another point. Suppose we operate twice on the point



(xk,yk). The result of the first iteration is given by (1)

and the result of the second is easily seen to be

2
rk+l,n+2 rk+l,n +(k ( k )rkn

=
rk-l,n+2 rk-l,n +( 2 k + (1-ek)2 )rk

2
rk,n+2 = (1- 0 k) rk,n

Now since the energy did not decrease we must have by

Proposition 3, that rkl,n' rk,n and rk+l,n are all of

the same sign. Also, since B-k.l we have

1 0 2
2 k (1-ek)

this shows that Jrk+l n+2 > rk, n+2. It follows that

(Xk' Ykn+2) will not be modified on the subsequent

iteration. It is not difficult to show that we will move

one point in at most 2 iterations, 2 points in at most 2+2
K

iterations and in general K points in at most Z 2 iterations.
i=l

This proves the proposition.

Remark. The bound given in the previous proposition is far

from being sharp. It merely demonstrates an important fact

which will allow us to prove convergence.

Proposition 5. The sequence E giving the total energy
n

at each iteration of the linear smoothing algorithm converges
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to zero.

Proof. From Proposition 3 {E ) is a monotone nonincreasing
n

sequence which is bounded below by zero; therefore it converges.

Suppose E E>O. First note that for each n=1,2,...
n

E
there exists an integer 1'j(n)- m such that aj(n),n! m.

To see this suppose ci < for 14im.
i,n mi

m

Then E = E a. <m - = E, which contradicts Proposition 3.
n i- i,n m

By Proposition 3 and 4 for some integer n9J(nk-n+2
m
we have that

E E - l8ka
J(n) 2 k ki

En 2 k j(i) ,i

4 E - E/(4m). (i=J(n)-l)
- n

Now, since E nE we have E -E = E n-EI; therefore given ¢>0n' nn

there exists N)0 such that E -E Ce whenever n>N. We have
n

E E _• E - E/(4m) -E3(n) n

Z e - E/(4m).

Now choosing 6 < E/(4m) gives E J(n) E; which again contradicts

Proposition 3. This proves the proposition.

Definition 6. Let A ={(x-i, yi):i=l,...,m ) for n=0,1,2,...

We say that the sequence of sets (A n converges to the set
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A* = {(xi ,y*): i=l,..,m) if Yin' for i=l,...,m.

Proposition 6. The total energy is a continuous functional,

i.e. if A - A*, then E(A )' E(A*).
n n

Proof. If A -A*, then the sequence of vectors Yn=(y
n

ym
)n ' 1

converges to the vector y*=(y*,...,y*) pointwise; hence in
m

any norm. Let aj denote the point energy at the j-th point
J,n

of An, with a similar definition for c*. A simple construction

shduld convince the reader that

I J,n- 211yn-y* 11.

It follows that oj n-'* and therefore E(A )-'E(A*). This

proves the proposition.

Proposition 7. The linear smoothing algorithm converges,

i.e., the sequence of sets { A } converges to a set A* withn

total energy zero.

Proof. We use the same notation as in the proof of Propo-

sition 6. Clearly ilYnllK IIYloIl, for n=1,2,3,... Hence

{yk) must have a subsequence which is convergent, say to y*.

If A* is the set corresponding to y*, then by Proposition 5 and

Proposition 6 E(A*) = 0. If the entire sequence does not

converge to y*, then each neighborhood of y* excludes infinitely

many members of yn} . These excluded members must have a

convergent subsequence. If y** denotes this limit, then



E(y*) = E(y**) = O; hence y* = y**; but this is a contra-

diction. This proves the proposition.

Remark. We have spent considerable time and effort proving

that the linear smoothing algorithm converges to a solution

which could have been immediately written down. Of course the

complete philosophy of this approach is that we only allow a

few iterations. Indeed, as our examples will show, this

philosophy is quite natural and analogous to what would be

done by an artist or a loftsman by hand. Namely, the algo-

rithm converges very quickly to an acceptable solution and

from then on the convergence is extremely slow. Our main

reason for proving convergence was to demonstrate that

the algorithm will not oscillate.
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4. Examples. Consider the twenty points A = {(l,y(l)),..., (20,y(20)))

taken from the graph of the cubic

y~x) (x) = (xl)(x-13)910

As it stands the set A is .0297-smooth. In our first example we

will introduce an error of .5 in the ll-th data point. We introduce

errors of -.5 in the 9-th point and .5 in the ll-th point for our

second example. Finally, the third example will consist of the points

of A with an error of -.5 in the lO-th point and .5 in the ll-th

point. Based on our theory we should expect the first two examples

to behave better than the third. Indeed, we obtain a curve as smooth

as the original curve in just one iteration for the first example and

in just two iterations for the second example; however the third

example requires five iterations. All the following calculations

were performed using a value of one for ek .

Observe that all three examples show that the energy is monotone

decreasing and that the smoothness is not monotone decreasing. How-

ever these examples imply that a reasonable stopping criterion (since

we do not want to end up with a straight line) is to stop at the first

iteration where the smoothness increases. In our examples this is the

iteration at which the original smoothness is restored.

The following tables and graphs are reasonably self-explanatory;

however we point out that the values for the energy and smoothness

were calculated at the beginning of each iteration and not at the

end.
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EXAMPLE 1

x
I -0. 00000
2 0.05000
3 0 10000
4 0 .15000
5 0.20000
5 0.25000
7 0.30000
8 0..35000
9 0.40000

10 0.45000
11 0.50000
12 0.55000
13 O.60000
14 0.65000
15 0.70000
16 0. 75000
17 0.80000
18 0.85000
1.9 0. 90000
20 0.95000

ITER ElIERGY
1 1.26044
2 0.26703
3 0.25220
4 0.25220
5 0.25?20
6 0.25220
7 0 25220
8 0.25220
9 0.2.3901

10 0.23901

y
-0.71209

-0 48.352

-0.30769
-0.17802
-0.087 1
-0.03077

0.0
0.01099

0.00879

0.0
-0.00087'9

-0 0 1 0')9

0.0
0. 0307
0.08 791
0.17802
0.30769

0. *48352

0.71209

1 * 00000

-03.1209
-0.48352

-0. 30769
-0. 17802

--0 08791
-0.03077

o . 0
0.01 09)
0.00879

0.0
0.49121

-0.01 01'9
0.0
0. 0:3077

o.08791

0.17u02

0.30769

0.43352

0.71209

1.000000

SMOOTHNESS

0.49670
0.02967
0.04121
0. 04 368
t0. 041G2
0. 0372(9
0 0 3118.3
0 02637
0.03626
0.03791

error

POPTT MOVED
11
19
18
I I

I (,
I 5
1 4

2
4
4



EXAIFLE 1

I 2 3 ~ 5 6 ? 9 10 11 12 i3 14 15 16 17 1a 19 20
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EXAMPLE 2

x y
1 -0.00000 -0.71209
2 0.05000 -0.48352

0 . 1 0000

0. 15000
0.20000
0.25000
0,30000
0. 35000
0.40000
0.45000
0.50000
0.55000
0.6 0000
0.65000
0.70000
0. 75000
0.80000
0.85000
0. 90000
0.95000

ENERGY
1.75384
1.25714
O.26374
0.24890
9.24890
) 24890
0,.24890
0.24890

0.24890
0.23571

-0. 3076)
-0.17802
-0 08791
-0.03077

0.0

0.0 (
-0 . t)0879
-0 0 0 99

0.0
0.03077
0.08791
0.17802
0 *30769

0*48352

0 .7120 '

I ,00000

y
-0 71209
-0.48352
-0.30769
-0.17802
.- 0 08791
-0 03077

0.0
0.01 094

-0 49121

0.0
0.491121

-0.01099
0 0
0.03077
0 08791
0. 17802
0.30769
0.48352
0.71209
1.00000

SMOOTHiiESS
0.49670
0.496 70
0 02967
0O041 ' 1.
0 04.368
0*04162
0.03729
0o031'33
0.02637
0.03626

error

error

POIiT LOVED
9

18
17
16
15
14

2
3

J
4'
5
6
7
9

10
11
12
13
14
15
16
17
18
19
20

ITER
I
2
3
4
5
6
7
8
9

10



EXAMPLE 2
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1 2 3 S4 5 6 ? 8 9 10 I 1 12 1 3 IS4 15 1 8 19 2



EXAMPLE 2

1 2 3 . 5 6 7 ? -8 9 10 !1 12 13 1 1s5 16 17 is Is 20.~ ~ ~~~~~~~1 18l~2



EXAMPLE 3

x
-0. 00000

0. 05000
0.10000
.15000

0.20000
0.25000

0.30000
0. 35000
0*40000
0.45000

0.50000
0.55000

0.60000
0.65000

0*70000
0.75000

0.80000

0.85000
0,90000

095000

y
-0. 11209
-0 .435?

-0.307f)
-0. 17?02
-0 ,) ,791
-0 . 030 f

0 .()0
0. O O f 7 '

-0. 0087
-0 . 0 1 099

0.0
0.03077
0.08791

0. 17 802
0o30769
0 4 8352
0.71 209

1.00000

y
--0 7120()'

-0 48352
-0. 30769
-0 .7t802
-0 * 07'91
--0*03077

U O
00 1099
0.()03079

-0 .50000 error
0.44`121 error

-0.01099
0 . 0
0. 03077
0). 03791
0.17802
0 a 307()'
0.483'52
0. 7 1209
1 · 00030

SMOOTI-LTESS
0.75000
0.37170

0.185R5
0.0929)3
0. 04646,
0.02967
0 04121
0. 04.368b

0.0416 2

0.03729

rOINT I'OVTID
o

11
10
11
1 
19
18
17
1 6
15

17

1
2
3
4
5

.6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ITER
I
2

3
4

5

6
7

8
9

10

ENERGY
2.26044

1 00385
0.63214
0.44629

0.35337
0.30690
().29207
0. 29207
0 2'29207
0.29207



EXANMPLE 3

Z 3 ~ 5 6 7 8 9 lO ll .12 13 14 15 16 17 18 i9 20



EXAMPLE 3

CN

I 2 3 14 5 6 ? 8 9 I0 I11 12 13 lq4 1 5 16 1 7 1~ 1 9 20



EXAMPLE 3

0
C\i

10 11 12 13'. lq 15 16 17 18 19 20



EXAMPLE 3

I 2 3 q 5 6 ? 8 9 ~~~~~~~~~~~~~10 I11 12 1 3 lq 15 16 IT7 18 1 2



LINEAR S00THING

SMOOTHNrESSOQ. 0296

5 ITERATIONS

1 2 3 q 5 6 ? 8 9 10 11 12 13 14 15

EXAMPLE 3

~~~~~+ / ~~~~~~~~~~~~~~

1.000 

0.800oo

0.600

0.qA00

0.230

-0.000

-0.200

-O.00OO

-0.600-

-0. 800-

-1.000-

+

I

16 17 1B 19 20
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